NUMERICAL SIMULATION OF THE EFFECT OF STIFNESS OF LAMINA PROPRIA ON THE SELF-SUASTAINED OSCILLATION OF THE VOCAL FOLDS


Abstract eng:
A two-dimensional (2D) finite element (FE) model of the fluid-structure-acoustic interaction during self-sustained oscillation of the human vocal folds (VF) is presented in this paper. The aim is to analyze the effect of stiffness of lamina propria on VF vibrations. Such stiffness change can be caused by some VF pathologies. The developed FE model consists of the FE models of the VF, trachea and a simplified human vocal tract. The vocal tract model shaped for simulation of phonation of Czech vowel [a:] was created by converting data from the magnetic resonance images (MRI). The developed FE model includes VF contact, large deformations of the VF tissue, fluid-structure interaction (FSI), moving boundary of the fluid mesh (Arbitrary Lagrangian-Eulerian (ALE) approach), airflow separation during the glottis closure and solution of unsteady viscous compressible airflow described by the Navier-Stokes equations. The numerical simulations showed that higher values of lamina propria Young's modulus (stiffer lamina propria) result in a decrease of the maximum glottis opening. Stiffer lamina propria also requires the use of higher subglottal pressure to initiate self-sustained vibration of the VF.

Contributors:
Publisher:
Institute of Thermomechanics AS CR, v.v.i., Praha
Conference Title:
Conference Title:
Engineering Mechanics 2016
Conference Venue:
Svratka, CZ
Conference Dates:
2016-05-09 / 2016-05-12
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2016-08-16, last modified 2016-08-16


Original version of the author's contribution as presented on CD, id 041, section BIO.:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)