000012650 001__ 12650
000012650 005__ 20160920162635.0
000012650 04107 $$aeng
000012650 046__ $$k2016-09-05
000012650 100__ $$aMeijer, M.-C.
000012650 24500 $$aReduction of computational cost in fluid-structure interaction modelling using piston theory

000012650 24630 $$n6.$$pInsights and Innovations in Structural Engineering, Mechanics and Computation
000012650 260__ $$bTaylor and Francis Group, London, UK
000012650 506__ $$arestricted
000012650 520__ $$2eng$$aA brief overview of the role of piston theory in modelling fluid-structure interaction for supersonic flows is given. A general formulation of piston theory for planar flows is introduced, from which the commonality and differences between classical and local piston theory are highlighted. The application of Local Piston Theory (LPT) to the flutter prediction of a cantilevered plate is illustrated, with the accuracy of prediction assessed relative to both experiment and to computational fluid dynamics. The flutter dynamic pressure is predicted by shock-expansion LPT to within 10% of the experimental value for 140 times lower computational cost compared to the unsteady Euler solution, which is accurate to within 5% of experiment.

000012650 540__ $$aText je chráněný podle autorského zákona č. 121/2000 Sb.
000012650 653__ $$a

000012650 7112_ $$aSixth International Conference on Structural Engineering, Mechanics and Computation$$cCape Town, South Africa$$d2016-09-05 / 2016-09-07$$gSEMC2016
000012650 720__ $$aMeijer, M.-C.
000012650 8560_ $$ffischerc@itam.cas.cz
000012650 8564_ $$s726386$$uhttps://invenio.itam.cas.cz/record/12650/files/098.pdf$$yOriginal version of the author's contribution as presented on CD, 098.pdf.
000012650 962__ $$r12552
000012650 980__ $$aPAPER