000015171 001__ 15171
000015171 005__ 20161115100213.0
000015171 04107 $$aeng
000015171 046__ $$k2016-08-21
000015171 100__ $$aMatlack, Kathryn
000015171 24500 $$aControlling band gaps with geometry in composite elastic meta-structures

000015171 24630 $$n24.$$p24th International Congress of Theoretical and Applied Mechanics - Book of Papers
000015171 260__ $$bInternational Union of Theoretical and Applied Mechanics, 2016
000015171 506__ $$arestricted
000015171 520__ $$2eng$$aArchitected materials can obtain enhanced elastic wave propagation properties not found in natural materials, such as low frequency or broadband vibration and sound absorption. Recent research has shown that composite elastic meta-structures present a way of simultaneously obtaining wide band gaps at low frequencies, by using resonating elements to broaden and lower Bragg gaps. These meta-structures combine embedded particles and an architected lattice, and are fabricated with novel 3D printing techniques. We demonstrate how tuning the lattice geometry of these meta-structures can control locally resonant modes of the embedded particles to achieve wider band gaps at lower frequencies, while keeping the total mass constant.

000015171 540__ $$aText je chráněný podle autorského zákona č. 121/2000 Sb.
000015171 653__ $$a

000015171 7112_ $$a24th International Congress of Theoretical and Applied Mechanics$$cMontreal (CA)$$d2016-08-21 / 2016-08-26$$gICTAM2016
000015171 720__ $$aMatlack, Kathryn
000015171 8560_ $$ffischerc@itam.cas.cz
000015171 8564_ $$s172614$$uhttps://invenio.itam.cas.cz/record/15171/files/TS.SM04-4.06.pdf$$yOriginal version of the author's contribution as presented on CD,  page 1933, code TS.SM04-4.06
.
000015171 962__ $$r13812
000015171 980__ $$aPAPER