Seismic Wave Amplification in 3D Alluvial Basins: Aggravation Factors From Fast Multipole Bem Simulations


Abstract eng:
In this work, we study seismic wave amplification in alluvial basins having 3D canonical geometries through the Fast Multipole Boundary Element Method in the frequency domain. We investigate how much 3D amplification differs from the 1D (horizontal layering) and the 2D cases. Considering synthetic incident wave-fields, we examine the relationships between the amplification level and the most relevant physical parameters of the problem (impedance contrast, 3D aspect ratio, vertical and oblique incidence of plane waves). The FMBEM results show that the most important parameters for wave amplification are the impedance contrast and equivalent shape ratio. Using these two parameters, we derive simple rules to compute the fundamental frequency for different 3D basin shapes and the corresponding 3D aggravation factor for 5% damping. Effects on amplification due to 3D basin asymmetry are also studied and incorporated in the derived rules..

Contributors:
Conference Title:
Conference Title:
16th World Conference on Earthquake Engineering
Conference Venue:
Santiago (CL)
Conference Dates:
2017-01-09 / 2017-01-13
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2017-01-18, last modified 2017-01-18


Original version of the author's contribution as presented on USB, paper 4648.:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)