MODELLING OF VIRUS VIBRATION WITH 3-D DYNAMIC ELASTICITY THEORY


Abstract eng:
Elastic properties of virus shells (capsids) are important as they protect the virus genome and play important role in virus internalization (the process of virus entering the cell). These properties can also be measured experimentally by direct deformation of the capsid with a microscope’s tip. A 3-D mathematical model of a virus under an external non-stationary load is proposed in this paper. The apparatus of the boundary value problems of mathematical physics was used during modeling. The stated initial boundary value problem of elasticity was solved with the help of the integral transformation method and the method of discontinuous solutions. As a result, the analytical solution of the problem was obtained in Laplace transformation domain. The numerical calculations of the virus elastic characteristics were illustrated for the case of a steady-state oscillation.

Contributors:
Publisher:
Brno University of Technology, Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno
Conference Title:
Conference Title:
Engineering Mechanics 2017
Conference Venue:
Svratka, CZ
Conference Dates:
2017-05-15 / 2017-05-18
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2017-05-22, last modified 2017-05-22


Original version of the author's contribution in proceedings, page 1126, section BIO.:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)