NONLINEAR SEISMIC ANALYSIS OF GRAVITY-DESIGNED RC STRUCTURES


Abstract eng:
This paper illustrates numerical simulations and comparisons with experimental results of existing RC beam-column sub-assemblages reinforced with smooth bars. The specimens reproduce parts of concrete structures designed only for vertical loads without any reinforcing detail rule (such as inadequate bars lap splice, absence of hoops within the joint panel) built in Italy during ‘50s-‘70s. In particular, in this paper is paid attention to the nonlinear models developed for predicting the failure mechanism experimentally observed, taking also into account the bond-slip phenomenon among the longitudinal bars and surrounding concrete. The proposed models are not time-consuming and may be easily implemented in any general-purpose finite element program for numerical simulations of concrete structures. These models represent an useful tool for seismic assessment with a good accuracy of nonductile RC existing structures.

Contributors:
Publisher:
National Technical University of Athens, 2017
Conference Title:
Conference Title:
COMPDYN 2017 - 6th International Thematic Conference
Conference Venue:
Rhodes Island (GR)
Conference Dates:
2017-06-15 / 2017-06-17
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2017-06-22, last modified 2017-06-22


Original version of the author's contribution as presented on CD, section: [MS18] Modeling the Nonlinear Behavior of Structures .:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)