NUMERICAL SEISMIC SAFETY ASSESSMENT OF RC BRIDGES WITH HOLLOW PIERS


Abstract eng:
The seismic damages of reinforced concrete bridges in recent events show that many of them have an inadequate behavior and safety. Therefore, is important to accurately define bridge safety assessment and hence evaluate the accuracy of the analytical methodologies for seismic response of bridges. The main objective of this paper is to present several options for structural simulation with different complexities in order to assess the seismic response of bridges and then use the results for the safety assessment with probabilistic approaches. The numerical simulations are carried out using three different methodologies: (i) plastic hinge model, (ii) fiber model and (iii) damage model. Seismic response of bridges is based on a simplified plane model, with easy practical application and involving reduced calculation efforts while maintaining adequate accuracy. The evaluation of seismic vulnerability is carried out through the failure probability quantification involving a non-linear transformation of the seismic action in its structural effects. The applicability of the proposed methodologies is then illustrated in the seismic analysis of two reinforced concrete bridges, involving a series of experimental tests and numerical analysis, providing an excellent set of results for comparison and global calibration.

Contributors:
Publisher:
National Technical University of Athens, 2015
Conference Title:
Conference Title:
COMPDYN 2015 - 5th International Thematic Conference
Conference Venue:
Crete (GR)
Conference Dates:
2015-05-25 / 2015-05-27
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2017-06-22, last modified 2017-06-22


Original version of the author's contribution as presented on CD, section: .:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)