Numerical simulation of microlevel experiments on Mg alloy


Abstract eng:
The paper presents a numerical simulation used for design of low level experiments on cantilever micro-beams prepared from magnesium alloy AZ31 by focused ion beam milling. Three dimensional FEM models for un-notched and notched micro-beams characterized with elasto-plastic-fracture behavior were created to compare the deflection of beams at yield strength and at fracture to optimize geometric dimensions of the beams with respect to other experimental techniques used for specimen loading (nanoindentation). Possible collisions with surrounding surface of the milled material are calculated. As the main parameter, the cantilever length was varied in the interval 10 to 20 µm and depth of the notch in 0-50% of the beam depth. Taking into account maximum deflections and possible nanoindenter tip to surface collisions the most reasonable dimensions of cantilevers were selected between length of 12 µm and 14 µm and the notch size of minimum 30 % of the beam depth.

Contributors:
Publisher:
Institute of Theoretical and Applied Mechanics of the Cech Academy of Sciences, Prague
Conference Title:
Conference Title:
Engineering Mechanics 2018
Conference Venue:
Svratka, CZ
Conference Dates:
2018-05-14 / 2018-05-17
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2022-01-10, last modified 2022-01-10


Original version of the author's contribution in proceedings, page , section FRA.:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)