EFFECT OF SOFTENING FUNCTION TYPE IN THE DOUBLE-K FRACTURE MODEL FOR THE EVALUATION OF FRACTURE TESTS ON CONCRETE SPECIMENS WITH AND WITHOUT POLYPROPYLENE FIBRES


Abstract eng:
Cement-based composites are traditionally a commonly used material in civil engineering structures. The basic representative of this type of material is concrete, a quasi-brittle composite in which crack resistance can be achieved by the addition of fibres. The double-K fracture model can be used to calculate the fracture-mechanical parameter values of structural concrete with and without polypropylene fibres. This model combines the concept of cohesive forces acting on the crack length with a criterion based on the stress intensity factor, using a ‘softening function’ to determine the cohesive part of fracture toughness. In this paper, authors determine the effect of the type of this softening function on the evaluation of fracture tests performed on sets of concrete specimens with and without polypropylene fibres.

Contributors:
Publisher:
Institute of Thermomechanics AS CR, v.v.i., Praha
Conference Title:
Conference Title:
Engineering Mechanics 2013
Conference Venue:
Svratka (CZ)
Conference Dates:
2013-05-13 / 2013-05-16
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:

 Record created 2014-11-12, last modified 2014-11-18


Original version of the author's contribution as presented on CD, FRA. :
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)