Stochastic simulation of creep crack growth in test specimens


Abstract eng:
Creep of metallic materials causes damage of many components in power and chemical industry. The process results in crack initiation, its growth and final fracture. The creep crack growth can be determined using the C ∗ -integral. The evaluation of the C ∗ -integral is described in R5 assessment procedure. However, calculation inputs (load, dimensions, material properties) show variation and can be considered as random variables. This paper is focused on stochastic simulation of creep crack growth. The Monte Carlo method was employed to determine distribution functions of time which is necessary for growth to given crack size. The procedure was applied to some test specimens (CT, MT) but it can be used for creep crack simulation in real structures, for example in piping.

Contributors:
Publisher:
Institute of Thermomechanics AS CR, v.v.i., Prague
Conference Title:
Conference Title:
Engineering Mechanics 2004
Conference Venue:
Svratka (CZ)
Conference Dates:
2004-05-10 / 2004-05-13
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2014-11-14, last modified 2014-11-18


Original version of the author's contribution as presented on CD, . :
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)