MESOSCALE MODELING OF GRAIN BOUNDARY MIGRATION UNDER STRESS USING COUPLED FINITE ELEMENT AND MESHFREE METHODS


Abstract eng:
The process of grain boundary migration involves moving interfaces and topological changes of grain boundary geometry. This can not be effectively modeled by Lagrangian, Eulerian, or arbitrary Lagrangian Eulerian finite element formulation when stress effect is considered. A coupled finite element and meshfree approach is proposed for modeling of grain boundary migration under stress. In this formulation, the material grid carries material kinematic and kinetic variables, whereas the grain boundary grid carries grain boundary kinematic variables. The material domain is discretized by a reproducing kernel partition of unity with built-in strain discontinuity across the grain boundaries. The grain boundaries, on the other hand, are discretized by the standard finite elements. This approach allows an arbitrary evolution of grain boundaries without continuous remeshing.

Contributors:
Publisher:
Columbia University in the City of New York
Conference Title:
Conference Title:
15th ASCE Engineering Mechanics Division Conference
Conference Venue:
New York (US)
Conference Dates:
2002-06-02 / 2002-06-05
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2014-11-19, last modified 2014-11-19


Original version of the author's contribution as presented on CD, .:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)