DESIGN AND APPLICATIONS OF PRESTRESSED TENSEGRITY STRUCTURES


Abstract eng:
The tensegrity framework consists of both compression members (struts) and tensile members (cables) in a specific topology stabilized by induced prestress. Tensegrity plays a vital role in technological advancement of mankind in many fields ranging from architecture to biology. In this paper we have reviewed topological classification of elementary cells of tensegrity structures including rhombic, circuit and Z type configurations. Further, different types of tensegrities created on the basis of these configurations are studied and analyzed, for instance Tensegrity prism, Diamond tensegrity, and Zig-zag tensegrity. Then we focus on special features, classification and construction of high frequency tensegrity spheres. They have a wide range of applications in the construction of tough large scale domes or in the field of cellular mechanics. The design approach of double layer high frequency tensegrities is outlined with help of a six frequency octahedral tensegrity network where inner and outer layers of tendons are inter-connected by struts and tendons. The construction of complicated single and double bonding spherical tensegrity systems using a repetetive pattern of locked kiss tensegrity is reviewed. Form-finding procedure to design a new tensegrity structure or improve the existing one by achieving the desired topology and level of prestress is discussed at the end. Types of tensegrities, their configurations and topologies studied in this paper can be helpful for their recognition and, consequently, bring their broader application in different technical fields.

Contributors:
Publisher:
Brno University of Technology- Institute of Solid Mechanics, Mechatronics and Biomechanics
Conference Title:
Conference Title:
Engineering Mechanics 2014
Conference Venue:
Svratka (CZ)
Conference Dates:
12/05/2014 - 15/05/2014
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2014-12-04, last modified 2014-12-04


Original version of the author's contribution as presented on CD, keynote, paper No. 16.:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)