Numerical prediction of parasitic energy dissipation in wedge splitting tests on concrete specimens


Abstract eng:
Undesirable energy dissipation taking place during wedge-splitting tests on cementitious composites and resulting in overestimation of the values of the determined fracture-mechanical characteristics of the tested materials is investigated in this paper via numerical simulations performed using a commercial finite element method tool with an implemented cohesive crack model. The rather broad range of cohesive behaviour of the studied materials was simulated through adjustments made to the corresponding characteristic length of the composite. The parasitic amount of energy is dissipated in fracture processes around the corners of the groove for the insertion of the loading platens. This amount was extracted from simulated load-displacement curves; it is observed that the amount considerably depends on the specimen proportions and only slightly on the level of material brittleness.

Contributors:
Publisher:
Institute of Theoretical and Applied Mechanics, AS CR, Prague
Conference Title:
Conference Title:
Engineering Mechanics 2012
Conference Venue:
Svratka (CZ)
Conference Dates:
12/05/2014 - 15/05/2014
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2014-12-04, last modified 2014-12-04


Original version of the author's contribution as presented on CD, paper (No. 186).:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)