Computationally efficient algorithms for evaluation of statistical descriptors


Abstract eng:
Homogenization methods are becoming the most popular approach to modelling of heterogeneous materials. The main principle is to represent the heterogeneous microstructure with an equivalent homogeneous material. When dealing with the complex random microstructures, the unit cell representing exactly periodic morphology needs to be replaced by a statistically equivalent periodic unit cell (SEPUC) preserving the important material properties in the statistical manner. One of the statistical descriptors suitable for SEPUC definition is the lineal path function. It is a low-order descriptor based on a more complex fundamental function able to capture certain information about the phase connectedness. Its main disadvantage is the computational cost. In this contribution, we present the reformulation of the sequential C code for evaluation of the lineal path function into the parallel C code with Compute Unified Device Architecture (CUDA) extensions enabling the usage of computational potential of the NVIDIA graphics processing unit (GPU).

Contributors:
Publisher:
Institute of Theoretical and Applied Mechanics, AS CR, Prague
Conference Title:
Conference Title:
Engineering Mechanics 2012
Conference Venue:
Svratka (CZ)
Conference Dates:
12/05/2014 - 15/05/2014
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2014-12-04, last modified 2014-12-04


Original version of the author's contribution as presented on CD, paper (No. 249).:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)