Strong Ground Motion Simulation for the 2005 Fukuoka Earthquake (Mw6.6) by Stochastic Finite-Fault Simulations


Abstract eng:
The theoretical basis of the stochastic finite-fault modeling was proposed by Boore (1983) and this technique has been developed by many researchers (g.e., Beresnev and Atkinson, 1997) and many papers were published applying it to real simulations. Recently, Motazedian and Atkinson (2005) have introduced the concept of “dynamic corner frequency" and “pulsing area" into the stochastic finite-fault modeling. It is possible to simulate strong ground motions from earthquakes in a more realistic way with these new concepts. We made a further modification that enables us to treat stress parameter variable on the fault plane, while the stress parameter is constant on the whole fault plane in the conventional stochastic finite-fault modeling. With this modification, we can introduce stress-variable source models such as asperity model. We apply our modified stochastic finite-fault modeling to the 2005 West Off Fukuoka earthquake (Mw6.6) that occurred in northwest Kyushu, Japan, and check whether we could satisfactorily reproduce the observed strong ground motion data. We adopt an asperity model and assign higher stress parameter to the asperity than that of the background region. To incorporate accurate site amplification effects, we employ site amplification data extracted by Kawase and Matsuo (2004) using the spectral separation technique. The obtained synthetic Fourier amplitude spectra and time series show overall agreement with the observed ones. In particular, the agreement of the Fourier amplitude spectra are quite well.

Contributors:
Conference Title:
Conference Title:
14th World Conference on Earthquake Engineering
Conference Venue:
Bejing (CN)
Conference Dates:
2008-10-12 / 2008-10-17
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2014-12-05, last modified 2014-12-05


Original version of the author's contribution as presented on CD, Paper ID: 02-0137.:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)