Seismic Rehabilitation of RC Frame Interior Beam-Column Joints with FRP Composites


Abstract eng:
An experimental research program is described regarding the use of externally applied Carbon Fiber Reinforced Polymer (CFRP) jackets for seismic rehabilitation of reinforced concrete interior beam-column joints, which were designed for gravity loads. The joints had steel reinforcement details that are known to be inadequate by current seismic codes in terms of joint shear capacity and bond capacity of beam bottom steel reinforcing bars at the joint. Lap splicing of beam bottom steel reinforcement at the joint using externally applied longitudinal CFRP composite laminates is investigated. Improvement of joint shear capacity using diagonal CFRP composite laminates is another strengthening scheme employed. The test results indicate that CFRP jackets are an effective rehabilitation measure for improving the seismic performance of existing beam-column joints with inadequate seismic details in terms of increased joint shear strength and inelastic rotation capacity. In addition, CFRP laminates are an effective rehabilitation measure for overcoming problems associated with beam bottom steel bars that have inadequate embedment into the beam-column joints.

Contributors:
Conference Title:
Conference Title:
14th World Conference on Earthquake Engineering
Conference Venue:
Bejing (CN)
Conference Dates:
2008-10-12 / 2008-10-17
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2014-12-05, last modified 2014-12-05


Original version of the author's contribution as presented on CD, Paper ID: 12-01-0028.:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)