A New Damage Model for the Seismic Damage Assessment of Reinforced Concrete Frame Strutures


Abstract eng:
In most existing reinforced concrete structures the deformation capacity deteriorates due to the low cycle fatigue effect. In order to take this effect into account in a seismic assessment, the cumulative damage caused by the energy dissipation has to be quantified. In the paper a new damage model for seismic damage assessment of reinforced concrete frame structures is proposed. It combines deformation and energy quantities at the element level in order to take into account the cumulative damage. In the new model the damage index is expressed as a deformation demand/capacity ratio. The equivalent deformation capacity is used as the available deformation capacity which takes into consideration the influence of cumulative damage. It is defined as a linear function of an energy demand/capacity ratio, and its range of values is between the monotonic and cyclic ultimate drift. In order to apply the new model, data on demands and capacities are needed. Seismic demands can be estimated by a seismic analysis of the structural model. For the estimation of capacities, some experimental data are available in existing databases on reinforced concrete elements.

Contributors:
Conference Title:
Conference Title:
14th World Conference on Earthquake Engineering
Conference Venue:
Bejing (CN)
Conference Dates:
2008-10-12 / 2008-10-17
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2014-12-05, last modified 2014-12-05


Original version of the author's contribution as presented on CD, Paper ID: 05-01-0039.:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)