Seismic Evaluation of Steel Moment Resisting Frame Buildings with Different Hysteresis and Stiffness Models


Abstract eng:
Current seismic design procedures that apply to an estimation of inelastic deformation capacity of lateral force resisting systems have been questioned since no rationality exists for determining the values of R tabulated in seismic design code. For this study, 3-, 9- and 20-story Steel Moment Resisting Frame (MRF) buildings were designed to satisfy the seismic requirements based on the IBC 2000 including the current value of 8 for the steel special moment resisting frame (MRF) buildings. Then, these analysis building models were redesigned using 6 different hysteresis models, which provide an ability to dissipate seismic input energy, for the beam-column connections. These models were also extended to account for the effects of period of the buildings. A total of 90 different building models were subjected to 20 ground motions representing a hazard level of 2% probability of being exceeded in 50 years to estimate the seismic demands. Pushover and nonlinear time history analysis were performed to calculate story drift and plastic rotation demands. The effects of hysteresis models and various periods of the steel special MRF are investigated and discussed.

Contributors:
Conference Title:
Conference Title:
14th World Conference on Earthquake Engineering
Conference Venue:
Bejing (CN)
Conference Dates:
2008-10-12 / 2008-10-17
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2014-12-05, last modified 2014-12-05


Original version of the author's contribution as presented on CD, Paper ID: 05-05-0168.:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)