Can Tsunami Drawdown Lead to Liquefaction Failure of Coastal Sandy Slopes?


Abstract eng:
A significant tsunami can cause severe damage to coastlines and coastal structures due to inundation, erosion, as well as hydrodynamic and debris impact. However, although there exist many analytical, numerical, and experimental studies of tsunami wave propagation and inundation modeling, few studies considered the possibility of tsunami induced liquefaction failure of coastal sandy slopes. The objective of this work is to investigate the liquefaction potential of planar fine sand slopes during tsunami runup and drawdown. The transient pressure distribution acting on the slope due to wave runup and drawdown is computed by solving for the hybrid Boussinesq – nonlinear shallow water equations using a finite volume method. The subsurface pore water pressure distribution is solved using a finite element method. The numerical methods are validated by comparing the results with experimental measurements from a large-scale laboratory study of breaking solitary waves over a planar fine sand beach. Numerical predictions are shown for a 10m solitary wave over a 1:15 and 1:5 sloped fine sand beach. The results show that the soil near the bed surface along the seepage face created during the drawdown is subject to liquefaction failure.

Contributors:
Conference Title:
Conference Title:
14th World Conference on Earthquake Engineering
Conference Venue:
Bejing (CN)
Conference Dates:
2008-10-12 / 2008-10-17
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2014-12-05, last modified 2014-12-05


Original version of the author's contribution as presented on CD, Paper ID: 15-0028.:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)