Computational Stochastic Dynamics Based on Orthogonal Expansion of Random Excitations


Abstract eng:
A major challenge in stochastic dynamics is to model nonlinear systems subject to general non-Gaussian excitations which are prevalent in realistic engineering problems. In this work, an n-th order convolved orthogonal expansion (COE) method is proposed. For linear vibration systems, the statistics of the output can be directly obtained as the first-order COE about the underlying Gaussian process. The COE method is next verified by its application on a weakly nonlinear oscillator. In dealing with strongly nonlinear dynamics problems, a variational method is presented by formulating a convolution-type Lagrangian and using the COE representation as trial functions.

Contributors:
Publisher:
National Technical University of Athens, 2011
Conference Title:
Conference Title:
COMPDYN 2011 - 3rd International Thematic Conference
Conference Venue:
Island of Corfu (GR)
Conference Dates:
2011-05-25 / 2011-05-28
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2016-11-14, last modified 2016-11-14


Original version of the author's contribution as presented on CD, section: MS 21 Reliability of Structural and Mechanical Systems for Uncertain Operating Conditions.:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)