Standardized compliance matrices for general anisotropic materials


Abstract eng:
The compliance matrix for a general anisotropic material is usually expressed in an arbitrarily chosen coordinate system, which brings some confusion or inconvenience in identifying independent elastic material constants and comparing elastic properties between different materials. In this paper, a unique stiffest orientation based standardized compliance matrix is established, and 18 independent elastic material constants are clearly shown. During the searching process for the stiffest orientation, it is interesting to find from our theoretical analysis and an example that a material with isotropic tensile stiffness does not definitely possess isotropic elasticity. Therefore the ratio between the maximum and minimum tensile stiffnesses, although widely used, is not a correct measure of anisotropy degree. Alternatively, a simple and correct measure of anisotropy degree based on the maximum shear-extension coupling coefficient in all orientations is proposed.

Publisher:
International Union of Theoretical and Applied Mechanics, 2016
Conference Title:
Conference Title:
24th International Congress of Theoretical and Applied Mechanics
Conference Venue:
Montreal (CA)
Conference Dates:
2016-08-21 / 2016-08-26
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2016-11-15, last modified 2016-11-15


Original version of the author's contribution as presented on CD, page 1994, code PO.SM04-1.26.240 .:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)