Local and global instability of buoyant jets and plumes


Abstract eng:
The local and global linear stability of buoyant jets and plumes has been studied as a function of the Richardson number Ri and density ratio S in the low Mach number approximation. Only the m = 0 axisymmetric mode is shown to become globally unstable, provided that the local absolute instability is strong enough. The helical mode of azimuthal wavenumber m = 1 is always globally stable. A sensitivity analysis indicates that in buoyant jets (low Ri), shear is the dominant contributor to the growth rate, while, for plumes (large Ri), it is the buoyancy. A theoretical prediction of the Strouhal number of the self-sustained oscillations in helium jets is obtained that is in good agreement with experimental observations over seven decades of Richardson numbers.

Publisher:
International Union of Theoretical and Applied Mechanics, 2016
Conference Title:
Conference Title:
24th International Congress of Theoretical and Applied Mechanics
Conference Venue:
Montreal (CA)
Conference Dates:
2016-08-21 / 2016-08-26
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2016-11-15, last modified 2016-11-15


Original version of the author's contribution as presented on CD, page 957, code TS.FM07-4.06 .:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)