A potential-flow model of viscous dissipation for the oscillating wave surger converter


Abstract eng:
A mathematical model of an oscillating wave surge converter is developed to study the effect that viscous dissipation has on the behaviour of the device. Recent theoretical and experimental testing have suggested that the standard treatment of viscous drag (e.g., Morison’s equation) may not be suitable when the effects of diffraction dominate the wave torque on the device. In this paper, a new model of viscous dissipation is presented and explored within the framework of linear potential flow theory, and application of Green’s theorem yields a hypersingular integral equation for the velocity visco-potential in the fluid domain. The hydrodynamic coefficients in the device’s equation of motion are then calculated, and used to examine the effect of dissipation on the device’s performance. A special focus is given to the effects of dissipation on the performance of a device that is tuned to resonate with the incoming waves.

Publisher:
International Union of Theoretical and Applied Mechanics, 2016
Conference Title:
Conference Title:
24th International Congress of Theoretical and Applied Mechanics
Conference Venue:
Montreal (CA)
Conference Dates:
2016-08-21 / 2016-08-26
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2016-11-15, last modified 2016-11-15


Original version of the author's contribution as presented on CD, page 3230, code TS.FS06-1.03 .:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)