Multi-material topology optimization of viscoelastically damped structures.


Abstract eng:
The design of high performance instruments often involves the attenuation of poorly damped resonant modes. Current design methods typically rely on informed trial and error based modifications to improve dynamic performance. In this contribution, we present a multi-material topology optimization as an alternative, systematic methodology to design structures with optimized damping characteristics. A parametric, level set-based topology optimization is employed to simultaneously distribute structural and viscoelastic material to optimize the structure’s damping characteristics. To model the viscoelastic behavior a complex-valued material modulus is applied. The structural loss factor is determined from the complex-valued eigensolutions and its value is maximized during the optimization. We demonstrate the performance of the optimization by maximizing the damping of a cantilever beam.

Publisher:
International Union of Theoretical and Applied Mechanics, 2016
Conference Title:
Conference Title:
24th International Congress of Theoretical and Applied Mechanics
Conference Venue:
Montreal (CA)
Conference Dates:
2016-08-21 / 2016-08-26
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2016-11-15, last modified 2016-11-15


Original version of the author's contribution as presented on CD, page 358, code TS.MS06-3.02 .:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)