Dispersion and localization in flexural waves supported by Rayleigh beam structures


Abstract eng:
The paper presents novel analysis of Floquet-Bloch flexural waves in a periodic lattice-like structure consisting of flexural beam ligaments. A special feature of this structure is in the presence of the rotational inertia, which is commonly neglected in conventional models of the Euler-Bernoulli type. The dispersion properties of the Rayleigh beam structure with rotational inertia include degeneracies linked to Dirac cones on the dispersion diagrams as well as directional anisotropy and special refraction properties. Steering of Dirac cones is described for rectangular flexural structures with a rotational inertia. The paper also brings a comparative analysis between dynamic models of couple-stress elastic materials and structured Rayleigh beams on a Winkler foundation. Although physical phenomena have different physical origins, the underlying equations appear to be similar, and hence mathematical models have a lot in common.

Publisher:
International Union of Theoretical and Applied Mechanics, 2016
Conference Title:
Conference Title:
24th International Congress of Theoretical and Applied Mechanics
Conference Venue:
Montreal (CA)
Conference Dates:
2016-08-21 / 2016-08-26
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2016-11-15, last modified 2016-11-15


Original version of the author's contribution as presented on CD, page 2476, code TS.SM10-2.03 .:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)