Rigid Body Time Integration By Convected Base Vectors With Implicit Constraints


Abstract eng:
A conservative time integration algorithm based on a convected set of orthonormal base vectors is presented. The equations of motion are derived from an extended Hamiltonian formulation, combining the components of the three base vectors with a set of orthonormality constraints. The particular form of the kinetic energy used in the present formulation is deliberately chosen to correspond to a rigid body rotation, and the orthonormality constraints are introduced via the equivalent Green strain components of the base vectors. The particular form of the extended inertia tensor used here implies a set of orthogonality relations between the base vector components and their conjugate momentum components. These orthogonality relations permit explicit elimination of the Lagrange multipliers associated with the constraints, leading to a projected form of the dynamic equation without explicit algebraic constraints. The differential equations of motion are recast into discrete form using a suitable combination of mean values and increments, which is identified by considering a finite increment of the Hamiltonian. Examples illustrate the accuracy and conservation properties of the algorithm.

Contributors:
Publisher:
National Technical University of Athens, 2013
Conference Title:
Conference Title:
COMPDYN 2013 - 4th International Thematic Conference
Conference Venue:
Island of Kos (GR)
Conference Dates:
2013-06-12 / 2013-06-14
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2016-11-15, last modified 2016-11-15


Original version of the author's contribution as presented on CD, section: CD-RS 13 NUMERICAL METHODS FOR LINEAR AND NONLINEAR DYNAMICS .:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)