Reduced Order Modelling of High-Fidelity Computational Fluid-Structure Interaction Analysis for Aeroelastic Systems


Abstract eng:
We investigate model reduction techniques through computational aeroelastic analyses of the HIRENASD and S4 T wings. The aim of the present work is to construct accurate and computationally efficient reduced order models for high-fidelity aeroelastic computations. Firstly, the aeroelastic analyses of the specified wings are performed by high-fidelity structural and aerodynamic models to substantiate the fluid-structure interaction. Concerning high amount of computational time required to perform such high-fidelity fluid-structure interaction analyses, the model orders are reduced by introducing relevant reduction techniques such as Polynomial Chaos Expansion and Proper Orthogonal Decomposition. The final aeroelastic analyses performed on these reduced models agree well with the initial high-fidelity computational analyses.

Contributors:
Publisher:
National Technical University of Athens, 2013
Conference Title:
Conference Title:
COMPDYN 2013 - 4th International Thematic Conference
Conference Venue:
Island of Kos (GR)
Conference Dates:
2013-06-12 / 2013-06-14
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2016-11-15, last modified 2016-11-15


Original version of the author's contribution as presented on CD, section: SC-MS 10 SOME INTERACTION PROBLEMS IN COMPUTATIONAL MECHANICS .:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)