Numerical Investigation of a Full-Scale RC Bridge Through 3D Detailed Nonlinear Limit-State Simulations


Abstract eng:
In this paper, a numerical investigation of the computational performance of ReConAn FEA will be performed through the full-scale 3D detailed modeling of a 100m span reinforced concrete bridge. The efficiency of the automatic procedure for generating embedded steel reinforcement elements inside the hexahedral finite elements will be presented and the numerical performance of the solver will be discussed. Furthermore, the numerical results that derived from the nonlinear numerical assessment of the bridge will be analyzed where a simplified finite element model developed in SAP2000 was used to compare the derived results from the 3D detailed simulation. In the 3D detailed modeling formulation adopted in this work, concrete is modeled through the use of 8-noded hexahedral elements that treat the cracking phenomenon through the smear crack approach and the reinforcement is modeled through the use of embedded 2-noded rod elements that incorporate the Menegotto-Pinto steel material model. The rebars are assumed to have perfect bonding thus the bond-slip between the rebars and concrete depends on failure of the concrete material. The piers with the pile cap and the bridge’s trapezoidal shaped continuous deck are modeled through the use of the adopted concrete hexahedral element, while the 3D geometry of the reinforcement grid, inside the concrete domain, is modeled in detail according to the technical drawings. Finally, the elastomeric bearings are also modeled by using 8-noded hexahedral elements that discretize the exact geometry of the isolation system.

Publisher:
National Technical University of Athens, 2013
Conference Title:
Conference Title:
COMPDYN 2013 - 4th International Thematic Conference
Conference Venue:
Island of Kos (GR)
Conference Dates:
2013-06-12 / 2013-06-14
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2016-11-15, last modified 2016-11-15


Original version of the author's contribution as presented on CD, section: SC-RS 05 COMPUTATIONAL SOLID AND STRUCTURAL MECHANICS .:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)