Is Direct Displacement Based Design Valid for Long Span Bridges?


Abstract eng:
The paper investigates the applicability of current direct displacement based seismic design (DDBD) procedure, developed by Priestley and his coworkers, for straight long span bridges under transverse seismic excitation synchronous to all supports. This category of bridges often possess some additional features such as massive tall piers, highly irregular distribution of mass and stiffness due to unequal superstructure spans and pier heights, large deformation capacity etc. that are absent in short-to-moderate span bridges for which DDBD has extensively been verified. It is shown that DDBD in its current form is unable to capture both displacement and base shear demand when compared with nonlinear dynamic analysis results. Accordingly, a simple mechanics based extension of the current procedure that takes into account the effect of pier mass while computing base shear demand as well as a modal combination rule for estimating displacement demand is proposed and validated using a series of parametric studies. The new procedure also allows engineer to allocate strength at the potential plastic hinge location in more general terms.

Contributors:
Conference Title:
Conference Title:
14th World Conference on Earthquake Engineering
Conference Venue:
Bejing (CN)
Conference Dates:
2008-10-12 / 2008-10-17
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2014-12-05, last modified 2014-12-05


Original version of the author's contribution as presented on CD, Paper ID: 05-02-0098.:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)