An Improved Procedure for Capacity Design of Vertical Boundary Elements in Steel Plate Shear Walls


Abstract eng:
Consistent with capacity design principles, the 2005 AISC Seismic Provisions require that the vertical and horizontal boundary elements of steel plate shear walls be designed to remain essentially elastic while the web plates yield under seismic loading. However, determination of the design loads for vertical boundary elements to reliably achieve capacity design is difficult and a reasonably accurate approximate procedure is needed. This paper presents such a procedure for determining those design loads for the vertical boundary elements of steel plate shear walls so that the desired component yielding sequence is achieved. The procedure combines an assumed plastic collapse mechanism with a linear model of a vertical boundary element to determine the maximum axial forces, shear forces, and moments for vertical boundary elements considering fully yielded web plates and horizontal boundary elements hinging at their ends.

Contributors:
Conference Title:
Conference Title:
14th World Conference on Earthquake Engineering
Conference Venue:
Bejing (CN)
Conference Dates:
2008-10-12 / 2008-10-17
Rights:
Text je chráněný podle autorského zákona č. 121/2000 Sb.



Record appears in:



 Record created 2014-12-05, last modified 2014-12-05


Original version of the author's contribution as presented on CD, Paper ID: 05-05-0014.:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)